skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia‐Sage, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetospheric precipitation plays an important role for the coupling of Magnetosphere, Ionosphere, and Thermosphere (M-I-T) systems. Particles from different origins could be energized through various physical mechanisms and in turn disturb the Ionosphere, the ionized region of the Earth’s atmosphere that is important for telecommunication and spacecraft operations. Known to cause aurora, bright displays of light across the night sky, magnetospheric particle precipitation, modifies ionospheric conductance further affecting the plasma convection, field-aligned (FAC) and ionospheric currents, and ionospheric/thermospheric temperature and densities. Therefore, understanding the properties of different sources of magnetospheric precipitation and their relative roles on electrodynamic coupling of M-I across a broad range of spatiotemporal scales is crucial. In this paper, we detail some of the important open questions regarding the origins of magnetospheric particle precipitation and how precipitation affects ionospheric conductance. In a companion paper titled “The Significance of Magnetospheric Precipitation for the Coupling of Magnetosphere-Ionosphere-Thermosphere Systems: Effects on Ionospheric Conductance”, we describe how particle precipitation affects the vertical structure of the ionospheric conductivity and provide recommendations to improve its modelling. 
    more » « less
  2. A large number of heliophysicists from across career levels, institution types, and job titles came together to support a poster at Heliophysics 2050 and the position papers for the 2024 Heliophysics decadal survey titled “Cultivating a Culture of Inclusivity in Heliophysics,” “The Importance of Policies: It’s not just a pipeline problem,” and “Mentorship within Heliophysics.” While writing these position papers, the number of people who privately shareddisturbing stories and experiences of bullying and harassmentwas shocking. The number of people who privately expressed howburned outthey were was staggering. The number of people who privately spoke about how theyconsidered leaving the field for their and their family’s healthwas astounding. And for as much good there is in our community, it is still atoxic environmentfor many. If we fail to do something now, our field will continue to suffer. While acknowledging the ongoing growth that we as individuals must work toward, we call on our colleagues to join us in working on organizational, group, and personal levels toward a truly inclusive culture, for the wellbeing of our colleagues and the success of our field. This work includes policies, processes, and commitments to promote:accountabilityfor bad actors;financial securitythrough removing the constant anxiety about funding;prioritizationof mental health and community through removing constant deadlines and constant last-minute requests;a collaborative culturerather than a hyper-competitive one; anda community where people can thrive as whole personsand do not have to give up a healthy or well-rounded life to succeed. 
    more » « less
  3. Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time. 
    more » « less
  4. The space physics community continues to grow and become both more interdisciplinary and more intertwined with commercial and government operations. This has created a need for a framework to easily identify what projects can be used for specific applications and how close the tool is to routine autonomous or on-demand implementation and operation. We propose the Application Usability Level (AUL) framework and publicizing AULs to help the community quantify the progress of successful applications, metrics, and validation efforts. This framework will also aid the scientific community by supplying the type of information needed to build off of previously published work and publicizing the applications and requirements needed by the user communities. In this paper, we define the AUL framework, outline the milestones required for progression to higher AULs, and provide example projects utilizing the AUL framework. This work has been completed as part of the activities of the Assessment of Understanding and Quantifying Progress working group which is part of the International Forum for Space Weather Capabilities Assessment. 
    more » « less
  5. Abstract As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of physical models, and to provide needed information for space weather customers and researchers. The working team developed a process for validating auroral electrodynamic quantities that begins with the selection of a set of events, followed by construction of ground truth databases using all available data and assimilative data analysis techniques. Using optimized, predefined metrics, the ground truth data for selected events can be used to assess model performance and improvement over time. The availability of global observations and sophisticated data assimilation techniques provides the means to create accurate ground truth databases routinely and accurately. 
    more » « less